Tritex II®AC and DC

TRITEX I® SERIES

FULLY INTEGRATED SERVO DRIVE/MOTOR/ACTUATOR
Linear or Rotary configurations
AC or DC powered models
Multiple networking options

Tritex II Linear
AC Actuator

Tritex II AC

No Compromising on Power, Performance or Reliability

With forces to approximately $3,225 \mathrm{lbf}(14 \mathrm{kN})$ continuous and $5,400 \mathrm{lbf}$ peak (24 kN), and speeds to $33 \mathrm{in} / \mathrm{sec}(800 \mathrm{~mm} / \mathrm{sec})$, the AC Tritex II linear actuators also offer a benefit that no other integrated product offers: POWER! No longer are you limited to trivial amounts of force, or speeds so slow that many motion applications are not possible. And the Tritex II with AC power electronics operates with maximum reliability over a broad range of ambient temperatures: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. The AC powered Tritex II actuators contain a 1.5 kW servo amplifier and a very capable motion controller. With standard features such as analog following for position, compound moves, move chaining, and individual force/ torque control for each move, the Tritex II Series is the ideal solution for most motion applications.

Tritex II Models

- T2X high mechanical capacity actuator
- R2M rotary motor
- R2G rotary gearmotor

Power Requirements

- AC Power 100V-240V, +/-10\%, single phase
- Built-in AC line filter
- Connections for external braking resistor

Feedback Types

- Analog Hall with 1000 count/motor rev resolution
- Incremental encoder with 8192 count resolution
- Absolute Feedback (analog hall with multi-turn, battery backup)

Connectivity

- Inernal terminals acessible through removable cover
- Threaded NPT ports

Technical Characteristics	
Frame Sizes in (mm)	$2.9(75), 3.5(90), 4.5(115)$
Screw Leads	$0.1(2), 0.2(5), 0.5(13), 0.75(19)$
Standard Stroke Lengths in (mm)	$3(75), 4(100), 6(150), 10(250), 12(300)$, $14(350), 18(450)$
Force Range	up to $3225 \mathrm{lbf}(14 \mathrm{kN})$
Maximum Speed	up to $33.3 \mathrm{in} / \mathrm{s}(846 \mathrm{~mm} / \mathrm{s})$

| Operating Conditions and Usage | |
| :--- | :--- | :--- |
| Accuracy: | |
| in/ft | |
| $(\mu \mathrm{m} / 300 \mathrm{~mm})$ | |$) 0.001(25)$

*Ratings for R2M075 at $40^{\circ} \mathrm{C}$, operation over $40^{\circ} \mathrm{C}$ requires de-rating. Ratings for R2M090 and R2M115 at $25^{\circ} \mathrm{C}$, operation over $25^{\circ} \mathrm{C}$ requires de-rating.
**Consult Exlar for extended temperature operation.

Tritex II AC Overview

Communications \& I/O

Digital Inputs:

10 to 30 VDC Opto-isolated

Digital outputs:

30 VDC maximum
100 mA continuous output Isolated

Analog Input AC:

$0-10 \mathrm{~V}$ or $+/-10 \mathrm{~V}$

$0-10 \mathrm{~V}$ mode, 12 bit resolution
+/-10V mode, 12 bit resolution on 90/115, 13 bit resolution on 75 assignable to Position, Velocity,
Torque, or Velocity Override commands.

Analog Output AC:

0-10V
12 bit resolution on 90/115, 11 bit resolution on 75

IA4 option:

4-20 mA input
16 bit resolution Isolated
Assignable to Position, Velocity, or Torque command
4-20 mA output
12 bit resolution
Assignable to Position, Velocity, Current, Temperature, etc

Standard Communications:

- 1 RS485 port, Modbus RTU, opto-isolated for programming, controlling and monitoring

The IO count and type vary with the actuator model and option module selected.

All models include isolated digital IO, and an isolated RS485 communication port when using Modbus RTU protocol.

Tritex II AC I/O					
	75/90/115 $\mathbf{~ m m}$ frame with SIO, EIP, PIO, TCP	$90 / 115 \mathrm{~mm}$ frame with IA4	75 mm frame with IA4	$90 / 115 \mathrm{~mm}$ frame with CAN	75 mm frame with CAN
Isolated digital inputs	8	8	4	8	4
Isolated digital outputs	4	4	3	4	3
Analog input, non isolated	1	1	0	0	0
Analog output, non isolated	1	1	0	0	0
Isolated 4-20ma input	0	1	1	0	0
Isolated 4-20ma output	0	1	1	0	0

Tritex II AC Overview

Product Features

1 - NPT Threaded Port via Adapter with Internal Terminals, $1 / 2^{\prime \prime}$ NPT

2 - Front flange and front flange* 3 -Rear clevis 4 - Side mount*, double side mount, metric side mount*, and metric double side mount
5 - Extended tie rods and metric extended tie rods 6 - Metric rear clevis 7 - Side trunnion and metric side trunnion 8 -Front flange and rear flange
9 - Male, metric thread 10 - Female, metric thread 11 - Male, US standard thread 12 - Female, US standard thread
13 - External anti-rotate 14 -Rear brake 15 -Protective Bellows

Industries and Applications

Hydraulic cylinder replacement
Ball screw replacement
Pneumatic cylinder replacement

Automotive

Clamping
Dispensing
Automated Assembly
Flexible Tooling
Food Processing
Depositing
Slicing
Diverters / Product Conveyance
Sealing

Process Control
Oil \& Gas Wellhead Valve Control
Pipeline Valve Control
Damper Control
Knife Valve Control
Chemical pumps
Entertainment / Simulation
Ride Motion Bases
Animatronics
Medical Equipment
Volumetric Pumps

Plastics

Forming
Part Eject
Core Pull
Material Handling
Robotic End Effectors
Edge Guiding

Exlar actuators can provide precision at high force loads for fluid dispensing in a medical environment.

Efficient food processing and packaging operations demand robust technologies that are powerful, durable, precise, and safe for food. Exlar products are ideal for these for harsh, high-capacity production environments

Mechanical Specifications
T2X075

		Stator	1 Stack	2 Stack	3 Stack
Lead		RPM @ 240 VAC	4000	3000	2000
0.1	Continuous Force	1 lbf (N)	$589(2,620)$	$990(4,404)$	NA
	Peak Force	lbf (N)	1,178 (5,240)	1,980 (8,808)***	NA
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	6.67 (169)	5.00 (127)	NA
	C_{a} (Dynamic Load Rating)	1 lbf (N)	5516 (24536)		NA
0.2	Continuous Force	1 lbf (N)	$334(1,486)$	$561(2,496)$	$748(3,327)$
	Peak Force	$\operatorname{lbf}(\mathrm{N})$	668 (2,971)	1,122 $(4,991)$	1,495 (6,650)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	13.33 (339)	10.00 (254)	6.67 (169)
	C_{a} (Dynamic Load Rating)	$1 \mathrm{lbf}(\mathrm{N})$	5800 (25798)		
0.5	Continuous Force	1 lbf (N)	141 (627)	$238(1,059)$	317 (1,410)
	Peak Force	lbf (N)	$283(1,259)$	$475(2,113)$	633 (2,816)
	Max Speed	in/sec (mm/sec)	33.33 (847)	25.00 (635)	16.67 (423)
	C_{a} (Dynamic Load Rating)	1 lbf (N)	4900 (21795)		
Drive Current @ Continuous Force		Amps	3.1	3.8	3.6
Available Stroke Lengths		in (mm)	3 (76), 6 (150), 10 (254),12 (305), 14 (356), 18 (457)		
Inertia (zero stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{Kg}-\mathrm{m}^{2}$	0.002655 (0.000003000)	002829 (0.000003196)	0.003003 (0.0000033963)
Inertia Adder (per inch of stroke)		lb -in-s $\mathrm{s}^{2} / \mathrm{in} / \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0001424 (0.0000001609)		
Approximate Weight		lb (kg)	10.8 (4.9) for 3 inch stroke, 1 stack. Add $1.1(0.5)$ per inch of stroke. Add $1.1(0.5)$ per motor stack. Add $.8(0.4)$ for brake.		
Operating Temperature Range ${ }^{\text {- }}$			-20 C to $65 \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)		
Continuous AC Input Current"		Amps	4.3	4	3.6

* Ratings based on $40^{\circ} \mathrm{C}$ conditions.
*** T2X peak force for 0.1 inch lead is $2073 \mathrm{lbf}(9221 \mathrm{~N}$).

T2X090

		Stator	1 Stack	2 Stack	3 Stack
Lead		RPM @ 240 VAC	4000	4000	3000
0.1	Continuous Force	lbf (N)	1,130 (5062)	1,488 (6619)	NA
	Peak Force	lbf (N)	2,260 (10053)	2,700 (12010)***	NA
	Max Speed	in/sec (mm/sec)	6.67 (169)	6.67 (169)	NA
	C_{a} (Dynamic Load Rating)	lbf (N)	5516 (24536)		NA
0.2	Continuous Force	lbf (N)	640 (2847)	843 (3750)	1,113 (4951)
	Peak Force	lbf (N)	1,281 (5698)	1,687 (7504)	2,225 (9897)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	13.33 (338)	13.33 (338)	10.00 (254)
	C_{a} (Dynamic Load Rating)	lbf (N)	5800 (25798)		
0.5	Continuous Force	lbf (N)	271 (1205)	357 (1588)	471 (2095)
	Peak Force	lbf (N)	542 (2410)	714 (3176)	942 (4190)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	33.33 (846)	33.33 (846)	25.00 (635)
	C_{a} (Dynamic Load Rating)	lbf (N)	4900 (21795)		
Drive Current @ Continuous Force		Amps	5.7	7.5	7.5
Available Stroke Lengths		in (mm)	3 (75), 6 (150), 10 (254), 12 (300), 18 (450)		
Inertia (zero stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{Kg}-\mathrm{m}^{2}$	0.002655 (0.000003000)	002829 (0.000003196)	0.003003 (0.0000033963)
Inertia Adder (per inch of stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in} / \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0001424 (0.0000001609)		
Approximate Weight		$\mathrm{lb}(\mathrm{kg})$	$14(6.35)$ for 3 inch stroke, 1 stack. Add 1 (0.5) per inch of stroke. Add 3 (1.4) per motor stack. Add 3 (1.4) for brake.		
Operating Temperature Range ${ }^{\text {- }}$		-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Continuous AC Input Current"		Amps	6.3	6.3	6.3

* Ratings based on $25^{\circ} \mathrm{C}$ conditions.
*** T2X peak force for 0.1 inch lead is $2700 \mathrm{lbf}(12010 \mathrm{~N})$.

Tritex II AC Linear

T2X115

		Stator	1 Stack	2 Stack	3 Stack
Lead		RPM @ 240 VAC	3000	2000	1500
0.1	Continuous Force	lbf (N)	2,060 $(9,163)$	3,224 (14,341)	NA
	Peak Force	lbf (N)	4,120 $(18,327)$	5,400 (24,020)***	NA
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	5.00 (127)	3.33 (84)	NA
	C_{a} (Dynamic Load Rating)	lbf (N)	7900 (35141)		NA
0.2	Continuous Force	lbf (N)	1,177 (5,235)	1,843 (8,198)	2,380 (10,586)
	Peak Force	lbf (N)	2,354 (10,471)	$3,685(16,392)$	4,760 (21,174)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	10.00 (254)	6.67 (169)	5.00 (127)
	$\mathrm{C}_{\text {a }}$ (Dynamic Load Rating)	lbf (N)	8300 (36920)		
0.5	Continuous Force	lbf (N)	$530(2,358)$	$829(3,688)$	1,071 (4,764)
	Peak Force	lbf (N)	1,059 (4711)	1,658 (7,375)	2,142 (9,528)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	25.00 (635)	16.67 (423)	12.50 (317)
	$\mathrm{C}_{\text {a }}$ (Dynamic Load Rating)	lbf (N)	7030 (31271)		
0.75	Continuous Force	lbf (N)	353 (1,570)	$553(2,460)$	$714(3,176)$
	Peak Force	lbf (N)	$706(3,140)$	1,106 (4,920)	1,428 (6,352)
	Max Speed	$\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$	37.5 (953)	25 (635)	17.75 (450)
	$\mathrm{C}_{\text {a }}$ (Dynamic Load Rating)	lbf (N)	6335 (28179)		
Drive Current @ Continuous Force		Amps	8.5	8.5	8.5
Available Stroke Lengths		in (mm)	$4 \text { (102), } 6 \text { (150), } 10(254), 12(300), 18(450)$		
Inertia (zero stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{Kg}-\mathrm{m}^{2}$	0.01132 (0.000012790)	0.01232 (0.00001392)	$0.01332(0.00001505)$
Inertia Adder (per inch of stroke)		$\mathrm{lb}-\mathrm{in}-\mathrm{s}^{2} / \mathrm{in} / \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{in}$	0.0005640 (0.0000006372)		
Approximate Weight		$\mathrm{lb}(\mathrm{kg})$	34 (15.5) for 6 inch stroke, 1 stack. Add 2 (1) per inch of stroke. Add 8 (4) per motor stack. Add 4 (2) for brake.		
Operating Temperature Range*			-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)		
Continuous AC Input Current"		Amps	8.3	8.3	8.3

[^0]
Rear Brake Current Draw

T2X075	0.50 Amps @ 24 VDC
T2X090	0.67 Amps @ 24 VDC
T2X115	0.75 Amps @ 24 VDC

DEFINITIONS:

Continuous Force: The linear force produced by the actuator at continuous motor torque.
Peak Force: The linear force produced by the actuator at peak motor torque.

Max Speed: The maximum rated speed produced by the actuator at rated voltage.
C_{a} (Dynamic Load Rating): A design constant used in calculating the estimated travel life of the roller screw.

Estimated Service Life

The L_{10} expected life of a roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained roller screws are expected to meet or exceed. For higher than 90% reliability, the result should be multiplied by the following factors: $95 \% \times 0.62 ; 96 \% \times 0.53 ; 97 \% \times 0.44 ; 98 \% \times 0.33 ; 99 \% \times 0.21$. This is not a guarantee; these charts should be used for estimation purposes only.

The underlying formula that defines this value is: Travel life in millions of inches, where:

$$
\begin{aligned}
& \begin{array}{l}
C_{\mathrm{a}}=\text { Dynamic load rating (lbf) } \\
\mathrm{F}_{\mathrm{cml}}=\text { Cubic mean applied load (lbf) } \\
\ell=\text { Roller screw lead (inches) }
\end{array} \quad \mathrm{L}_{10}=\binom{\mathrm{C}_{\mathrm{a}}}{\mathrm{~F}_{\mathrm{cml}}}^{3} \times \\
& \text { All curves represent properly lubricated and maintained } \\
& \text { actuators. }
\end{aligned}
$$

Speed vs. Force Curves

Temperature Derating

The speed/torque curves are based on $25^{\circ} \mathrm{C}$ ambient conditions. The actuators may be operated at ambient temperatures up to $65^{\circ} \mathrm{C}$. Use the curve (shown right) for continuous torque/force deratings above $25^{\circ} \mathrm{C}$.

Tritex II AC Linear

Speed inch/sec (mm/sec)

**T2X peak force for 0.1 inch lead is $2073 \operatorname{lbf}(9221 \mathrm{~N})$.

[^1]
Tritex II AC Linear

Speed inch/sec ($\mathrm{mm} / \mathrm{sec}$)

*Test data derived using NEMA recommended aluminum heatsink $10 " \times 10 " \times 3 / 8$ " at $25^{\circ} \mathrm{C}$ ambient.

Tritex II AC Linear

**T2X peak force for 0.1 inch lead is $5400 \mathrm{lbf}(24020 \mathrm{~N})$.

[^2]
Options

AR = External Anti-rotate Assembly

This option provides a rod and bushing to restrict the actuator rod from rotating when the load is not held by another method. Shorter actuators have single sided anti-rotation attachments. Longer lengths require attachments on both sides for proper operation. For AR dimensions, see page 46.

RB = Rear Electric Brake

This option provides an internal holding brake. The brake is spring activated and electrically released.

PB = Protective Bellows

This option provides an accordion style protective bellows to protect the main actuator rod from damage due to abrasives or other contaminants in the environment in which the actuator must survive. The standard material of this bellows is S 2 Neoprene Coated Nylon, Sewn Construction. This standard bellows is rated for environmental temperatures of -40 to 250 degrees F. Longer strokes may require the main rod of the actuator to be extended beyond standard length. Not available with extended tie rod mounting option. Please contact your local sales representative.

Tritex II AC Linear

Dimensions

T2X075 Double Side Mount or Extended Tie Rod Mount

T2X075 Side Trunnion Mount or Rear Clevis Mount

T2X075 Front, Rear, or Front and Rear Flange Mount

DIM	3 in $(75 \mathrm{~mm})$ stroke in (mm)	6 in $(150 \mathrm{~mm})$ stroke in (mm)	10 in $(250 \mathrm{~mm})$ stroke in (mm)	12 in $(300 \mathrm{~mm})$ stroke in (mm)	14 in $(350 \mathrm{~mm})$ stroke in (mm)	18 in $(450 \mathrm{~mm})$ stroke in (mm)
A	$11.98(304.3)$	$14.45(367.0)$	$18.95(481.3)$	$20.95(532.1)$	$22.95(582.9)$	$26.95(684.5)$
B	$6.15(156.2)$	$8.62(218.9)$	$13.12(333.2)$	$15.12(384.0)$	$17.12(434.8)$	$21.12(536.4)$
C	$5.38(136.7)$	$8.00(203.2)$	$10.00(254.0)$	$12.00(304.8)$	$14.00(355.6)$	$18.00(457.2)$
D	$13.40(340.4)$	$15.87(403.1)$	$20.37(517.4)$	$22.37(568.2)$	$24.37(619.0)$	$28.37(720.6)$

[^3]
Tritex II AC Linear

T2X090 Double Side Mount or Extended Tie Rod Mount

T2X090 Side Trunnion Mount or Rear Clevis Mount

T2X090 Front, Rear, or Front and Rear Flange Mount

DIM	3 in $(75 \mathrm{~mm})$ stroke in (mm)	6 in $(150 \mathrm{~mm})$ stroke in (mm)	10 in $(250 \mathrm{~mm})$ stroke in (mm)	12 in $(300 \mathrm{~mm})$ stroke in (mm)	18 in $(450 \mathrm{~mm})$ stroke in (mm)
A	$11.54(293.1)$	$14.01(355.9)$	$18.53(470.7)$	$20.53(521.5)$	$26.53(673.9)$
B	$6.15(156.1)$	$8.62(218.9)$	$13.12(333.3)$	$15.12(384.1)$	$21.12(536.4)$
C	$5.38(136.7)$	$8.01(203.4)$	$10.00(254.0)$	$12.00(304.8)$	$18.00(457.2)$
D	$13.52(343.3)$	$15.99(406.1)$	$20.49(520.4)$	$22.49(571.2)$	$28.49(723.6)$

[^4]
Tritex II AC Linear

T2X115 Double Side Mount or Extended Tie Rod Mount

T2X115 Side Trunnion Mount or Rear Clevis Mount

T2X115 Front, Rear, or Front and Rear Flange Mount

DIM	4 in $(102 \mathrm{~mm})$ stroke in (mm)	6 in $(152 \mathrm{~mm})$ stroke in (mm)	10 in $(254 \mathrm{~mm})$ stroke in (mm)	12 in $(305 \mathrm{~mm})$ stroke in (mm)	18 in $(457 \mathrm{~mm})$ stroke in (mm)
A	$13.79(350.3)$	$15.79(401.1)$	$19.79(502.7)$	$21.79(553.5)$	$27.79(705.9)$
B	$8.31(211.1)$	$10.31(261.8)$	$14.31(363.5)$	$16.31(414.3)$	$22.31(566.7)$
C	$4.00(101.6)$	$6.00(152.4)$	$10.00(254.0)$	$12.00(304.8)$	$18.00(457.2)$
D	$15.99(406.1)$	$17.99(456.9)$	$21.99(558.5)$	$23.99(609.3)$	$29.99(761.7)$

[^5]Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

Tritex II AC Linear

Anti-Rotate Option

DIM in (mm)	T2X075	T2X090	T2X115
A	$0.82(20.8)$	$0.75(19.1)$	$1.13(28.7)$
B	$2.20(56.0)$	$2.32(58.9)$	$3.06(77.7)$
C	$0.60(15.3)$	$0.70(17.8)$	$1.00(25.4)$
D	$1.32(33.5)$	$1.32(33.5)$	$1.65(41.9)$
E	$2.70(68.7)$	$2.82(71.6)$	$3.63(92.2)$
F	$0.39(9.9)$	$0.38(9.7)$	$0.50(12.7)$
G	$1.70(43.2)$	$1.70(43.2)$	$1.97(50.0)$
ØH	$0.63(16.0)$	$0.63(16.0)$	$0.75(19.1)$

Actuator Rod End Option

*When ordering the male $\mathrm{M} 12 \times 1.75$ main rod for the T 2 X 075 dimension " A " will be 1.57 in (40 mm)

Clevis Pin

DIM	T2X075 / T2X090	T2X075 / T2X090	T2X115
in	CP050		
(mm)	Rod Eye, Rod Clevis	CP075 Rear Clevis	CP075 Rod Eye, Rod Clevis, Spherical Eye, Rear Clevis
A	$2.28(57.9)$	$3.09(78.5)$	$3.09(78.5)$
B	$1.94(49.28)$	$2.72(69.1)$	$2.72(69.1)$
C	$0.17(4.32)$	$0.19(4.82)$	$1.19(4.82)$

[^6]
Tritex II AC Linear

Spherical Rod Eye

DIM in $(\mathbf{m m})$	T2X075	T2X090	T2X115
A	$1.81(46.0)$	$2.125(54.0)$	$2.88(73.2)$
ØB	$0.438(11.13)$	$0.500(12.7)$	$0.75(19.1)$
C	$1.06(26.9)$	$1.156(29.4)$	$1.72(43.7)$
D	$1.13(28.7)$	$1.312(33.3)$	$1.75(44.5)$
E	14 Deg	6 Deg	14 Deg
F	$0.44(11.1)$	$0.500(12.7)$	$0.69(17.5)$
G	$0.56(14.2)$	$0.625(15.9)$	$0.88(22.3)$
H	$0.75(19.1)$	$0.875(22.2)$	$1.13(28.7)$
J	$0.63(16.0)$	$0.750(19.1)$	$1.00(25.4)$
K	$7 / 16-20$	$1 / 2-20$	$3 / 4-16$

Rod Eye

$\begin{gathered} \text { DIM } \\ \text { in (mm) } \end{gathered}$	T2X075	T2X090	T2X115
	RE050	REI050	RE075
ØA	0.50 (12.7)	0.50 (12.7)	0.75 (19.05)
B	0.75 (19.1)	0.75 (19.05)	1.25 (31.8)
C	1.50 (38.1)	1.50 (38.1)	2.06 (52.3)
D	0.75 (19.1)	0.75 (19.05)	1.13 (28.7)
E	0.63 (15.9)	0.375 (9.53)	0.88 (22.2)
F	7/16-20	1/2-20	3/4-16

Rod Clevis

DIM in (mm)	T2X075	T2X090	T2X115
A	$0.750(19.05)$	$0.750(19.05)$	$1.125(28.58)$
B	$0.750(19.05)$	$0.750(19.05)$	$1.25(31.75)$
C	$1.500(38.1)$	$1.500(38.1)$	$2.375(60.3)$
D	$0.500(12.7)$	$0.500(12.7)$	$0.625(15.88)$
E	$0.765(19.43)$	$0.765(19.43)$	$1.265(32.12)$
ØF	$0.500(12.7)$	$0.500(12.7)$	$0.75(19.1)$
ØG	$1.000(25.4)$	$1.000(25.4)$	$1.50(38.1)$
H	$1.000(25.4)$	$1.000(25.4)$	$1.25(31.75)$
ØJ	$1.000(25.4)$	N/A	$1.25(31.75)$
K	$7 / 16-20$	$1 / 2-20$	$3 / 4-16$

Tritex II AC Rotary

Mechanical Specifications

R2M/G075

Rotary Motor Torque and Speed Ratings				
	Stator	1 Stack	2 Stack	3 Stack
	RPM at 240 VAC	4000	3000	2000
Continuous Torque	lbf-in (Nm)	13 (1.47)	21 (2.37)	28 (3.16)
Peak Torque	lbf-in (Nm)	25 (2.8)	42 (4.75)	56 (6.33)
Drive Current @ Continuous Torque	Amps	3.1	3.8	3.8
Operating Temperature Range*	-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Continuous AC Input Current"	Amps	4.3	4	3.6

* Ratings based on $40^{\circ} \mathrm{C}$ ambient conditions.
** Continuous input current rating is defined by UL and CSA.
For output torque of R2G gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.

Inertia				
	Stator	1 Stack	2 Stack	3 Stack
R2M Motor Armature Inertia $(+/-5 \%)$	$\mathrm{lb}-{\mathrm{in}-\mathrm{sec}^{2}}_{\left(\mathrm{kg}-\mathrm{cm}^{2}\right)}$	0.000545 (0.6158)	0.000973 (1.0996)	0.001401 (1.5834)
R2G Gearmotor Armature Inertia* $(+/-5 \%)$	lbf-in-sec $\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$	0.000660 (0.7450)	0.001068 (1.2057)	0.001494 (1.6868)

*Add armature inertia to gearing inertia for total R2G system inertia.

Radial Load and Bearing Life						
RPM	50	100	250	500	1000	3000
R2M075	278	220	162	129	102	71
lbf (N)	(1237)	(979)	(721)	(574)	(454)	(316)
R2G075 lbf (N)	343	272	200	159	126	88
(1526)	(1210)	(890)	(707)	(560)	(391)	

Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings

		Maximum Allowable Output Torque-Set by User lbf-in (Nm)			Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio	1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	4000 RPM Ibf-in (Nm)			
R2G075-004	$4: 1$	$1618(182.8)$	$384(43.4)$	$292(32.9)$	$254(28.7)$		
R2G075-005	$5: 1$	$1446(163.4)$	$395(44.6)$	$300(33.9)$	$260(29.4)$		
R2G075-010	$10: 1$	$700(79.1)$	$449(50.7)$	$341(38.5)$	$296(33.9)$		

Two torque ratings for the R2G gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size R2G gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia		
	Single Reduction	
Gear Stages	lbf-in-sec	
$4: 1$	0.000095	$\left({\left.\mathrm{~kg}-\mathrm{cm}^{2}\right)}^{2}\right.$
$5: 1$	0.000062	(0.107)
$10: 1$	0.000017	(0.069)

Backlash and Efficiency		
	Single Reduction	Double Reduction
Backlash at 1\% Rated Torque	10 Arc min	13 Arc min
Efficiency	91%	86%

Motor and Gearmotor Weights

		R2M075 without Gears	R2G075 with 1 Stage Gearing	Added Weight for Brake
1 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$7.4(3.4)$	$9.8(4.4)$	$1.0(0.5)$
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$9.2(4.2)$	$11.6(5.3)$	
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$11(4.9)$	$13.4(6.1)$	

Tritex II AC Rotary

R2M/G090

Rotary Motor Torque and Speed Ratings				
	Stator	2 Stack	2 Stack	3 Stack
	RPM at 240 VAC	4000	3000	2000
Continuous Torque	lbf-in (Nm)	30 (3.4)	40 (4.5)	52 (5.9)
Peak Torque	lbf-in (Nm)	60 (6.8)	80 (9.0)	105 (11.9)
Drive Current @ Continuous Torque	Amps	7.5	7.5	6.6
Operating Temperature Range*	-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Continuous AC Input Current"	Amps	6.3	6.3	6.3

* Ratings based on $25^{\circ} \mathrm{C}$ ambient conditions.
** Continuous input current rating is defined by UL and CSA.

For output torque of R2G gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.

Inertia			
	Stator	2 Stack	3 Stack
R2M Motor Armature Inertia (+/-5\%)	Ib-in-sec ${ }^{2}\left(\mathrm{~kg}-\mathrm{cm}^{2}\right)$	$0.00097(1.09)$	$0.00140(1.58)$
R2G GearmotorArmature Inertia* (+/-5\%)	lbf-in-sec ${ }^{2}\left(\mathrm{kg-cm}^{2}\right)$	$0.00157(1.77)$	$0.00200(2.26)$

*Add armature inertia to gearing inertia for total inertia.

Radial Load and Bearing Life						
RPM	50	100	250	500	1000	3000
R2M090	427	340	250	198	158	109
lbf (N)	(1899)	(1512)	(1112)	(881)	(703)	(485)
R2G090	350	278	205	163	129	89
bf (N)	(1557)	(1237)	(912)	(725)	(574)	(396)

Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings

Model	Ratio	Maximum Allowable Output Torque-Set by User Ibf-in (Nm)	Output Torque at Motor Speed for 10,000 Hour Life		
			1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	4000 RPM Ibf-in (Nm)
R2G090-004	4:1	2078 (234.8)	698 (78.9)	530 (59.9)	460 (51.9)
R2G090-005	5:1	1798 (203.1)	896 (101.2)	680 (76.8)	591 (66.8)
R2G090-010	10:1	1126 (127.2)	1043 (117.8)	792 (89.4)	688 (77.7)
R2G090-016	16:1	2078 (234.8)	1057 (119.4)	803 (90.7)	698 (78.9)
R2G090-020	20:1	2078 (234.8)	1131 (127.8)	859 (97.1)	746 (84.3)
R2G090-025	25:1	1798 (203.1)	1452 (164.1)	1103 (124.6)	958 (108.2)
R2G090-040	40:1	2078 (234.8)	1392 (157.3)	1057 (119.4)	918 (103.7)
R2G090-050	50:1	1798 (203.1)	1787 (201.9)	1358 (153.4)	1179 (133.2)
R2G090-100	100:1	1126 (127.2)	1100 (124.3)	1100 (124.3)	1100 (124.3)

Two torque ratings for the R2G gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size R2G gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia					
Single Reduction			Double Reduction		
Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$	Gear Stages	lbf-in-sec ${ }^{2}$	$\left(\mathrm{kg}-\mathrm{cm}^{2}\right)$
4:1	0.000154	(0.174)	16:1	0.000115	(0.130)
5:1	0.000100	(0.113)	20:1, $25: 1$	0.0000756	(0.0854)
10:1	0.0000265	(0.0300)	40:1, 50:1, 100:1	0.0000203	(0.0230)
Motor and Gearmotor Weights					
		R2M090 without Gears	R2G090 with 1 Stage Gearing	$\begin{aligned} & \text { R2G090 } \\ & 2 \text { Stage Ge } \end{aligned}$	Added Weight for Brake
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	14 (6.4)	22 (10)	25 (11.3)	1.5 (0.7)
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	17 (7.7)	25 (11.3)	28 (12.7)	

Backlash and Efficiency

	Single Reduction	Double Reduction
Backlash at 1\% Rated Torque	10 Arc min	13 Arc min
Efficiency	91%	86%

Tritex II AC Rotary

Dimensions

R2M/G075 Base Actuator

		R2M075	R2G075			R2M075	R2G075
A	in	5.32	5.32	L	in	0.79	0.79
	mm	135.1	135.1		mm	20.0	20.0
B	in	- 3.05	- 3.05	M	in	Ø 0.5512 / 0.5508	Ø 0.6302 / 0.6298
	mm	77.4	77.4		mm	14 h6	16 j6
C	in	4 X Ø 0.26 ON BC	4 X Ø 0.26 ON BC	N	in	1.18	1.18
	mm	6.5	6.5		mm	30.0	30.0
D	in	Ø 3.74 BC	Ø 3.74 BC	0	in	See Below	See Below
	mm	95.0	95.0		mm	See Below	See Below
E	in	Ø 2.5587 / 2.5580	Ø 2.5587 / 2.5580	P	in	5.59	5.59
	mm	65 g 6	65 g 6		mm	142.0	142.0
F	in	0.70	0.70	Q	in	1.50	1.50
	mm	17.9	17.9		mm	38.1	38.1
G	in	$\boldsymbol{\varnothing} 0.1969$ / 0.1957	$\boldsymbol{\varnothing} 0.1969$ / 0.1957	R	in	0.67	0.67
	mm	5 h 9	5 h 9		mm	17.0	17.0
H	in	0.21	0.21	S	in	0.75	0.75
	mm	5.3	5.3		mm	19.1	19.1
I	in	3.05	3.05	T	in	0.75	0.75
	mm	77.4	77.4		mm	19.1	19.1
J	in	0.38	0.45	U	in	4.58	4.58
	mm	9.5	11.5		mm	116.4	116.4
K	in	0.11	0.11				
	mm	2.8	2.8				

R2M075

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
0	$9.85(250.2)$	$10.85(275.6)$	$11.85(301.0)$

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
0	$8.57(217.7)$	$9.57(243.1)$	$10.57(268.5)$

R2G075

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
0	$10.19(258.8)$	$11.19(284.2)$	$12.19(309.6)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
	1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead
0	$11.42(290.1)$	$12.42(315.5)$	$13.42(340.9)$

[^7]
Tritex II AC Rotary

R2M/G090 Base Actuator

		R2M090	R2G090			R2M090	R2G090
A	in	0.2360 / 0.2348	0.2362 / 0.2350	J	in	$\varnothing 0.7480$ / 0.7475	Ø 0.8665 / 0.8659
	mm	6 h 9	6 h 9		mm	$19 \mathrm{h6}$	22 j6
B	in	3.54	3.54	K	in	1.57	1.89
	mm	90	90		mm	40	48
C	in	3.54	3.54	L	in	0.39	0.63
	mm	90	90		mm	10	16
D	in	$\varnothing 3.1492$ / 3.1485	$\varnothing 3.1492$ / 3.1485	M	in	See Below	See Below
	mm	80 g 6	80 g 6		mm	See Below	See Below
E	in	0.85	0.96	N	in	2.15	2.15
	mm	21.5	24.5		mm	55	55
F	in	$4 \mathrm{X} \varnothing 0.28$ ON BC	$4 \mathrm{X} \varnothing 0.257$ ON BC	0	in	6.95	6.95
	mm	7	6.5		mm	177	177
G	in	$\varnothing 3.94$ BC	$\varnothing 3.94$ BC	P	in	3.74	3.74
	mm	100	100		mm	95	95
H	in	0.12	0.118	Q	in	1.25	1.25
	mm	3	3		mm	32	32
1	in	1.38	1.417				
	mm	35	36				

R2M090

	Without Brake Option	
DIM	2 Stack Stator	3 Stack Stator
M	$10.25(256.3)$	$11.25(285.8)$

With Brake Option		
DIM	2 Stack Stator	3 Stack Stator
M	$11.6(294.6)$	$12.6(320.0)$

R2G090

	Without Brake Option	
DIM	2 Stack Stator	3 Stack Stator
M	Stage Gearhead	12 Stage Gearhead
DIM	2 2 Stack Stator	$13.36(339.3)$
M	2 Stage Gearhead	2 Stack Stator
Stage Gearhead		

	With Brake Option	
DIM	2 Stack Stator	3 Stack Stator
	1 Stage Gearhead	1 Stage Gearhead
M	$13.67(347.2)$	$14.67(372.6)$
DIM	2 Stack Stator	3 Stack Stator
M	$14.94(379.5)$	$15.94(404.9)$

[^8]
Tritex II AC Rotary

R2M/G115 Base Actuator

		R2M115	R2G115			R2M115	R2G115
A	in	0.3150 / 0.3135	0.3937 / 0.3923	J	in	$\varnothing 0.9449$ / 0.9444	Ø 1.2603 / 1.2596
	mm	8 h9	10 h 9		mm	24 h6	32 j6
B	in	4.53	4.530	K	in	1.97	2.55
	mm	115	115		mm	50	65
C	in	4.53	4.530	L	in	0.45	0.64
	mm	115	115		mm	12	16
D	in	$\varnothing 4.3302$ / 4.3294	$\varnothing 4.3302$ / 4.3294	M	in	See Below	See Below
	mm	110 g 6	110 g 6		mm	See Below	See Below
E	in	1.06	1.380	N	in	2.27	2.27
	mm	27	35		mm	58	58
F	in	$4 \times \varnothing 0.34$ ON BC	$4 \times \varnothing 0.34$ ON BC	0	in	7.56	7.56
	mm	8.5	8.5		mm	192	192
G	in	$\varnothing 5.12$ BC	Ø 5.12 BC	P	in	4.23	4.23
	mm	130	130		mm	108	108
H	in	0.16	0.16	Q	in	1.25	1.25
	mm	4	4		mm	32	32
I	in	1.41	1.58				
	mm	35.9	40				

R2M115

Without Brake Option		
DIM	1 Stack Stator	2 Stack Stator
M	$9.87(250.7)$	$11.87(301.5)$

With Brake Option		
DIM	1 Stack Stator	2 Stack Stator
M	$11.60(294.6)$	$13.60(345.4)$

R2G115

	Without Brake Option	
DIM	1 Stack Stator	2 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	
M	$13.88(352.6)$	$15.88(403.4)$
DIM	1 Stack Stator	2 Stack Stator
M Stage Gearhead	2 Stage Gearhead	
M	$15.49(393.4)$	$17.49(444.2)$

	With Brake Option	
DIM	1 Stack Stator	2 Stack Stator
	Stage Gearhead	1 Stage Gearhead
M	$15.43(391.9)$	$17.43(442.7)$
DIM	1 Stack Stator	2 Stack Stator
M Stage Gearhead	2 Stage Gearhead	
M	$17.04(432.8)$	$19.04(483.6)$

[^9]
Notes


```
T2X = Actuator Type
T2X = Tritex II Linear Actuator, high mechanical
    capacity
BBB = Actuator Frame Size
075 = 75 mm
090=90 mm
115=115 mm
CC = Stroke Length
03 = 3 inch (76 mm) (N/A T2X115)
04 = 4 inch (102 mm) (T2X115 only)
06 = 6 inch (150 mm)
10=10 inch (254 mm)
12 = 12 inch ( }305\textrm{mm}\mathrm{ )
18=18 inch (457 mm)
DD = Screw Lead (linear travel per
    screw revolution)
01 = 0.1 inch ( }2.54\textrm{mm}
02=0.2 inch ( }5.08\textrm{mm}
05=0.5 inch (12.7 mm)
08=0.75 inch (19.05 mm) (T2X115 only) }\mp@subsup{}{}{2
E = Connections
N = NPT Threaded Port via Adapter with Internal
    Terminals, 1/2" NPT
```

F = Mounting
$\mathrm{C}=$ Rear Clevis
D = Double Side Mount
E = Extended Tie Rod
F = Front Flange
$B=$ Front and Rear Flange, English
$\mathrm{G}=$ Metric Rear Clevis
$\mathrm{K}=$ Metric Double Side Mount
M = Metric Extended Tie Rod
Q = Metric Side Trunnion
$R=$ Rear Flange
$\mathrm{T}=$ Side Trunnion
G = Rod End
A = Male Metric Thread ${ }^{1}$
$B=$ Female Metric Thread ${ }^{1}$
F = Female US Standard Thread ${ }^{1}$
M = Male US Standard Thread ${ }^{1}$
HH = Feedback Type
HD = Analog Hall Device
IE $=$ Incremental Encoder, 8192 count resolution
AF = Absolute Feedback
III-II = Motor Stator, All 8 Pole
T2X075 Stator Specifications
$138-40=1$ Stack, 230 VAC, 4000 rpm $238-30=2$ Stack, 230 VAC, 3000 rpm $338-20=3$ Stack, 230 VAC, 2000 rpm

T2X090 Stator Specifications
$138-40=1$ Stack, 230 VAC, 4000 rpm $238-40=2$ Stack, $230 \mathrm{VAC}, 4000 \mathrm{rpm}$ $238-30=2$ Stack, 230 VAC. $3000 \mathrm{rpm}^{5}$

T2X115 Stator Specifications
138-30 = 1 Stack, 230 VAC, 3000 rpm
$238-20=2$ Stack, 230 VAC, $2000 \mathrm{rpm}^{7}$
$238-15=2$ Stack, 230 VAC, $1500 \mathrm{rpm}^{5,7}$ (N/A with $0.1^{\prime \prime}$ lead)

JJJ = Voltage
$230=115-230 \mathrm{VAC}$, single phase
KKK = Option Board
SIO = Standard I/O Interconnect
IA4 $=4-20 \mathrm{~mA}$ Analog $/ / 0$
CON $=$ CANOpen, without M12 ${ }^{6}$
EIN = SIO plus EthernetIP without M12 connector ${ }^{6}$
PIN = SIO plus Profinet 1 O without M12 connector ${ }^{6}$
TCN = SIO plus Modbus TCP without M12 connector ${ }^{9}$

MM $=$ Mechanical Options ${ }^{3}$
AR = External Anti-rotate
L1/2/3 $=$ External Limit Switches ${ }^{4}$
RB = Rear Brake
$\mathrm{PB}=$ Protective Bellows (N/A with extended tie rod mounting option)

NOTES:

1. Chrome-plated carbon steel. Threads not chrome-plated.
2. 0.75 lead not available above 12 inch stroke.
3. For extended temperature operation consult factory for model number.
4. Limit switch option requires AR option.
5. N/A with 0.1 inch lead
6. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only.
7. Not available with 4 inch stroke.

Tritex II AC Rotary Ordering Guide

R2M/G = Motor Type
R2M = Tritex II AC Rotary Motor
R2G = Tritex II AC Rotary Gearmotor
AAA = Frame Size
$075=75 \mathrm{~mm}$
$090=90 \mathrm{~mm}$
$115=115 \mathrm{~mm}$
BBB = Gear Ratio
Blank $=$ R2M
Single Reduction Ratios
$004=4: 1$
$005=5: 1$
$010=10: 1$
Double Reduction Ratios (N/A on 75 mm)
$016=16: 1 \quad 020=20: 1$
$025=25: 1 \quad 040=40: 1$
$050=50: 1 \quad 100=100: 1$
C = Shaft Type
K = Keyed
R = Smooth/Round
D = Connections
$\mathrm{N}=$ NPT Threaded Port with Internal Terminals, 1/2" NPT
$E=$ Coating Options
G = Exlar Standard
F = Brake Option
S = No Brake, Standard
$B=$ Electric Brake, 24 VDC
GG = Feedback Type
HD = Analog Hall Device
IE = Incremental Encoder, 8192 Count Resolution
AF = Absolute Feedback
HHH-HH = Motor Stators
R2M/G075 Stator Specifications
138-40 = 1 Stack, 230 VAC, 4000 rpm
$238-30=2$ Stack, 230 VAC, 3000 rpm 338-20 = 3 Stack, 230 VAC, 2000 rpm

R2M/G090 Stator Specifications
238-40 = 2 Stack, 230 VAC, 4000 rpm
238-30 = 2 Stack, 230 VAC, 3000 rpm 338-20 = 3 Stack, 230 VAC, 2000 rpm

R2M/G115 Stator Specifications
138-30 = 1 Stack, 230 VAC, 3000 rpm 238-20 = 2 Stack, 230 VAC, 2000 rpm 238-15 = 2 Stack, 230 VAC, 1500 rpm

III = Voltage
$230=115-230$ VAC, Single Phase

JJJ = Option Board
SIO = Standard I/O Interconnect
$\mathrm{IA} 4=4-20 \mathrm{~mA}$ Analog I / O
CON = CANOpen, without M12 connector ${ }^{1}$
EIN = SIO plus EthernetIIP without M12 connector ${ }^{1}$
PIN = SIO plus Profinet IO without M12 connector ${ }^{1}$
TCN = SIO plus Modbus TCP without M12 connector ${ }^{1}$

For options or specials not listed above or for extended temperature operation, please contact Exlar

NOTES:

1. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only. 2. For extended temperature operation consult factory for model number.

Tritex II DC Overview

Tritex II DC

Linear \& Rotary Actuators

No Comproming on Power, Performance or Reliability With forces to approximately $950 \mathrm{lbs}(4 \mathrm{kN})$ continuous and $1,300 \mathrm{lbf}$ peak (6 kN), and speeds to $33 \mathrm{in} / \mathrm{sec}(800 \mathrm{~mm} / \mathrm{sec}$), the DC Tritex II linear actuators also offer a benefit that no other integrated product offers: POWER! No longer are you limited to trivial amounts of force, or speeds so slow that many motion applications are not possible. And the new Tritex II with DC power electronics operates with maximum reliability over a broad range of ambient temperatures: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. The DC powered Tritex II actuators contain a 750 W servo amplifier and a very capable motion controller. With standard features such as analog following for position, compound moves, move chaining, and individual force/torque control for each move, the Tritex II Series is the ideal solution for most motion applications.

Tritex II Models

- TDX high mechanical capacity actuator, 75 mm
- RDM rotary motor, 75 , and 90 mm
- RDG rotary gearmotor, 75 , and 90 mm

Power Requirements

- DC Power 12-48 VDC nominal
- Connections for external braking resistor

Feedback Types

- Analog Hall with 1000 count resolution
- Incremental encoder with 8192 count resolution
- Absolute Feedback (analog hall with multi-turn, battery backup)

Connectivity

- Internal terminals accessible through removable cover (75 and 90 mm models)
- Threaded ports for cable glands (75 and 90 mm models)

Technical Characteristics	
Frame Sizes in (mm)	$2.9(75)$
Screw Leads in (mm)	$0.1(2), 0.2(5), 0.4(10)$,
	$0.5(13)$
Standard Stroke Lengths	$3(75), 6(150), 10(250)$, in (mm)
Force Range	up to 800$), 14(352 \mathrm{lbf}(3879 \mathrm{~N})$
Maximum Speed	up to $33.3 \mathrm{in} / \mathrm{s}(846 \mathrm{~mm} / \mathrm{s})$

Operating Conditions and Usage		
Accuracy:		
Screw Lead Error	in/ft ($\mu \mathrm{m} / 300 \mathrm{~mm}$)	0.001 (25)
Screw Travel Variation	in/ft ($\mu \mathrm{m} / 300 \mathrm{~mm}$)	0.0012 (30)
Screw Lead Backlash	in	0.004 (TDX)
Ambient Conditions:		
Standard Ambient Temperature	${ }^{\circ} \mathrm{C}$	0 to 65
Extended Ambient Temperature**	${ }^{\circ} \mathrm{C}$	-40 to 65
Storage Temperature	${ }^{\circ} \mathrm{C}$	-40 to 85
IP Rating		$\begin{aligned} & \text { TDX }=\text { IP66S } \\ & \text { RDM/RDG }=\text { IP66S } \end{aligned}$
NEMA Ratings		None
Vibration		$5.0 \mathrm{~g} \mathrm{rms}, 5$ to 500 hz
* Ratings at $40^{\circ} \mathrm{C}$, operatio ${ }^{* *}$ Consult Exlar for extended	over $40^{\circ} \mathrm{C}$ re temperature	uires de-rating. peration.

Tritex II DC Overview

Communications \& I/O

Digital Inputs:
9 to 30 VDC Opto-isolated

Digital outputs:

30 VDC maximum
100 mA continuous output
Isolated
Short circuit and over temperature protected

Analog Input DC:

$0-10 \mathrm{~V}$ or $+/-10 \mathrm{~V}$
$0-10 \mathrm{~V}$ mode, 12 bit resolution
+/-10V mode, 13 bit resolution assignable to Position, Velocity,
Torque, or Velocity override command

IA4 option:

4-20 mA input
16 bit resolution
Isolated
Assignable to Position, Velocity, Torque, or Velocity Override command

4-20 mA output
12 bit resolution
Assignable to Position, Velocity, Current, Temperature, etc.

Standard Communications:

- 1 RS485 port, Modbus RTU, opto-isolated for programming, controlling and monitoring

Analog Output DC:

0-10V

11 bit resolution

Tritex II DC I/O			
	$\mathbf{7 5 / 9 0} \mathbf{~ m m ~ f r a m e ~}$ with SIO, EIP, PIO, TCP	75/90 $\mathbf{~ m m ~ f r a m e ~}$ with IA4	$\mathbf{7 5 / 9 0} \mathbf{~ m m ~ f r a m e ~}$ with CAN
Isolated digital inputs	8	4	4
Isolated digital outputs	4	3	3
Analog input, non isolated	1	0	0
Analog output, non isolated	1	0	0
Isolated 4-20ma input	0	1	0
Isolated 4-20ma output	0	1	0

The IO count and type vary with the actuator model and option module selected.
All models include isolated digital IO, and an isolated RS485 communication port when using Modbus RTU protocol.

Product Features

1 -NPT Threaded Port via Adapter with Internal Terminals, $1 / 2^{\prime \prime}$ NPT (75 mm only)
2 - Front \& Rear Flange and Front Flange* 3-Rear Clevis
4 - Double Side Mount, Metric Side Mount*, Metric Double Side Mount, Side Mount* 5-Extended Tie Rod and Metric Extended Tie Rod 6-Metric Rear Clevis
7 - Metric Side Trunnion and Side Trunnion 8 -Female Metric Thread and Male Metric Thread SS 9 -Male Metric Thread and Male Metric Thread SS
10 - Female Metric Thread and Female Metric Thread SS 11 - Male US Standard Thread and Male, US Standard Thread SS
12 - Female US Standard Thread and Female US Standard Thread SS 13 - External Anti-rotate 14 - Rear Brake 15 - Protective Bellows

Tritex II DC Linear

Industries and Applications

Hydraulic cylinder replacement Ball screw replacement Pneumatic cylinder replacement

Mobile Equipment

Unmanned Vehicles

Process Control

Oil \& Gas Wellhead Valve Control
Pipeline Valve Control Damper Control
Knife Valve Control Chemical pumps

Entertainment / Simulation

Ride Motion Bases
Animatronics

Since no fluids and associated equipment (pumps, compressors, filters, accumulators, hose/tubing, oil testing, etc.) are required, electromechanical actuators offer greater energy efficiency, less environmental impact and lower total life-cycle cost.

The Tritex II Series DC actuators integrate a DC powered servo drive, digital position controller, brushless motor, and linear actuator in a compact, sealed package making it perfect for environments where AC power is difficult to achieve.

Mechanical Specifications

TDX075

*Power supply current is based on software current limit, not thermal limit. Consideration for peak current should also be considered when sizing power supplies. **Rating based on $40^{\circ} \mathrm{C}$ ambient conditions.

DEFINITIONS:

Continuous Force: The linear force produced by the actuator at continuous motor torque.
Peak Force: The linear force produced by the actuator at peak motor torque.

Max Speed: The maximum rated speed produced by the actuator at rated voltage.
C_{a} (Dynamic Load Rating): A design constant used in calculating the estimated travel life of the roller screw.

Estimated Service Life

- - TDX075-xx01
- - TDX075-xx02
- - TDX075-xx05

The L_{10} expected life of a roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained roller screws are expected to meet or exceed. For higher than 90% reliability, the result should be multiplied by the following factors: $95 \% \times 0.62 ; 96 \% \times$ $0.53 ; 97 \% \times 0.44 ; 98 \% \times 0.33 ; 99 \% \times 0.21$. This is not a guarantee; these charts should be used for estimation purposes only.

The underlying formula that defines this value is:
Travel life in millions of inches, where:
$\mathrm{C}_{\mathrm{a}}=$ Dynamic load rating (lbf)
$\mathrm{F}_{\mathrm{cm}}=$ Cubic mean applied load (lbf)
$\ell=$ Roller screw lead (inches)
All curves represent properly lubricated and maintained actuators.

Speed vs. Force Curves

Temperature Derating

The speed/torque curves are based on $40^{\circ} \mathrm{C}$ ambient conditions. The actuators may be operated at ambient temperatures up to $65^{\circ} \mathrm{C}$. Use the curve (shown right) for continuous torque/force deratings above $40^{\circ} \mathrm{C}$.

Speed inch $/ \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$

*Test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ at $40^{\circ} \mathrm{C}$ ambient.

Tritex II DC Linear

Options

AR = External Anti-rotate Assembly

This option provides a rod and bushing to restrict the actuator rod from rotating when the load is not held by another method. Shorter actuators have single sided anti-rotation attachments. Longer lengths require attachments on both sides for proper operation. For AR dimensions, see page 64.

RB = Rear Electric Brake

This option provides an internal holding brake. The brake is spring activated and electrically released.

PB = Protective Bellows

This option provides an accordion style protective bellows to protect the main actuator rod from damage due to abrasives or other contaminants in the environment in which the actuator must survive. The standard material of this bellows is S 2 Neoprene Coated Nylon, Sewn Construction. This standard bellows is rated for environmental temperatures of -40 to 250 degrees F. Longer strokes may require the main rod of the actuator to be extended beyond standard length. Not available with extended tie rod mounting option. Please contact your local sales representative.

Dimensions

TDX075 Double Side Mount or Extended Tie Rod Mount

TDX075 Side Trunnion Mount or Rear Clevis Mount

TDX075 Front, Rear, or Front and Rear Flange Mount

DIM	$\mathbf{3}$ inch $(\mathbf{7 5 ~ m m})$ stroke in $(\mathbf{m m})$	$\mathbf{6}$ inch $(150 \mathrm{~mm})$ stroke in $(\mathbf{m m})$	10 inch $(\mathbf{2 5 0 ~ m m})$ stroke in $(\mathbf{m m})$	12 inch $(\mathbf{3 0 0} \mathbf{~ m m})$ stroke in $(\mathbf{m m})$	14 inch $(\mathbf{3 5 0 ~ m m})$ stroke in $(\mathbf{m m})$	$\mathbf{1 8}$ inch ($\mathbf{4 5 0} \mathbf{~ m m})$ stroke in $(\mathbf{m m})$
A	$10.98(278.9)$	$13.45(341.6)$	$17.95(455.9)$	$19.95(506.7)$	$21.95(557.5)$	$25.95(659.1)$
B	$6.15(156.2)$	$8.62(218.9)$	$13.12(333.2)$	$15.12(384.0)$	$17.12(434.8)$	$21.12(536.4)$
C	$5.38(136.7)$	$8.00(203.2)$	$10.00(254.0)$	$12.00(304.8)$	$14.00(355.6)$	$18.00(457.2)$
D	$12.40(315.0)$	$14.87(377.7)$	$19.37(492.0)$	$21.37(542.8)$	$23.37(593.6)$	$27.37(695.2)$

* Add 1.61 inches to dimensions " A ", " B " and " D " if ordering a brake. Add1.2 inches to dimensions " A ", " C " and " D " and dimension if ordering a splined \triangle main rod.
**Add 2 inches (50.8 mm) to " E " if ordering protective bellows.

Tritex II DC Linear

Anti-Rotate Option

Actuator Rod End Option

DIM	TDX075
A	$0.750(19.1)$
B	$0.500(12.7)$
\varnothing C	$0.625(15.9)$
D	$0.281(7.1)$
\varnothing E	$0.562(14.3)$
F	$0.750(19.1)$
Male-Inch	$7 / 16-20$
Male-Metric	UNF-2A
Female-Inch	$7 / 1.75-60^{\circ}$
Female-Metric	UNF-2B

'When ordering the male M12x1.75 main rod for the TDX075 dimension " A " will be 1.57 in (40 mm)

Tritex II DC Linear

Clevis Pin

	TDX075
DIM	CP075 in (mm) Rear Clevis
A	$3.09(78.5)$
B	$2.72(69.1)$
C	$1.19(4.82)$
ØD	$0.75(19.1)-0.001 /-0.002$
ØE	$0.14(3.56)$

Spherical Rod
Eye

Rod Eye

	TDX075
DIM	RE050 in (mm)
ØA	$0.50(12.7)$
B	$0.75(19.1)$
C	$1.50(38.1)$
D	$0.75(19.1)$
E	$0.63(15.9)$
F	$7 / 16-20$

Rod Clevis

	TDX075
DIM	RC050 in (mm)
A	$0.75(19.1)$
B	$0.75(19.1)$
C	$1.50(38.1)$
D	$0.50(12.7)$
E	$0.765(19.43)$
ØF	$0.50(12.7)$
ØG	$1.00(25.4)$
H	$1.00(25.4)$
ØJ	$1.00(25.4)$
K	$7 / 16-20$

Tritex II DC Rotary

Mechanical Specifications

RDM/G075

Rotary Motor Torque and Speed Ratings				
	Stator	1 Stack	2 Stack	3 Stack
	RPM at 48 VDC	4000	3000	2000
Continuous Torque	lbf-in (Nm)	13 (1.46)	18.5 (2.09)	29 (3.28)
Peak Torque	lbf-in (Nm)	18.9 (2.08)	28 (3.16)	41 (4.63)
Drive Current @ Continuous Torque	Amps	22	22	22
Operating Temperature Range"	-20 to $65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar)			
Maximum Continuous Power Supply Current	Amps	15	18	18

* Power supply current is based on software current limit, not thermal limit. Consideration for peak current should also be considered when sizing power supplies.

For output torque of RDG gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.
** Ratings based on $40^{\circ} \mathrm{C}$ ambient conditions.

Inertia				
	Stator	1 Stack	2 Stack	3 Stack
RDM Motor Armature Inertia (+/-5\%)	$\begin{aligned} & \mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2} \\ & \left(\mathrm{~kg}-\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{aligned} & 0.000545 \\ & (0.6158) \end{aligned}$	$\begin{aligned} & 0.000973 \\ & (1.0996) \end{aligned}$	$\begin{aligned} & 0.001401 \\ & (1.5834) \end{aligned}$
RDG Gearmotor Armature Inertia* (+/-5\%)	$\begin{aligned} & \text { Ibf-in-sec² } \\ & \left(\mathrm{kg}-\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{aligned} & 0.000660 \\ & (0.7450) \end{aligned}$	$\begin{aligned} & 0.001068 \\ & (1.2057) \end{aligned}$	$\begin{aligned} & 0.001494 \\ & (1.6868) \end{aligned}$

Radial Load and Bearing Life						
RPM	50	100	250	500	1000	3000
$\underset{\text { lbf (N) }}{\text { RDMO75 }}$	$\begin{gathered} 278 \\ (1237) \end{gathered}$	$\begin{gathered} 220 \\ (979) \end{gathered}$	$\begin{gathered} 162 \\ (721) \end{gathered}$	$\begin{gathered} 129 \\ (574) \end{gathered}$	$\begin{gathered} 102 \\ (454) \end{gathered}$	$\begin{gathered} 71 \\ (316) \\ \hline \end{gathered}$
$\underset{\text { lbf (N) }}{\text { RDGO75 }}$	$\begin{gathered} 343 \\ (1526) \end{gathered}$	$\begin{gathered} 272 \\ (1210) \end{gathered}$	$\begin{gathered} 200 \\ (890) \end{gathered}$	(707)	$\begin{gathered} 126 \\ (560) \end{gathered}$	$\begin{gathered} 88 \\ (391) \end{gathered}$

*Add armature inertia to gearing inertia for total inertia.
Side load ratings shown above are for 10,000 hour bearing life at 25 mm from motor face at given rpm.

Gearmotor Mechanical Ratings					
		Maximum Allowable Output	Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio	Torque-Set by User Ibf-in (Nm)	1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	4000 RPM Ibf-in (Nm)
RDG075-004	$4: 1$	1618 (182.8)	384 (43.4)	292 (32.9)	254 (28.7)
RDG075-005	5:1	1446 (163.4)	395 (44.6)	300 (33.9)	260 (29.4)
RDG075-010	10:1	700 (79.1)	449 (50.7)	341 (38.5)	296 (33.4)

Two torque ratings for the RDG gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size RDG gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia		
	Single Reduction (+l-5\%)	
Gear Stages	lbf-in-sec	
$4: 1$	0.000095	$\left({\left.\mathrm{~kg}-\mathrm{cm}^{2}\right)}\right.$
$5: 1$	0.000062	(0.107)
$10: 1$	0.000117	(0.069)

Motor and Gearmotor Weights							
		RDM075 without Gears	RDG075 with 1 Stage Gearing	Added Weight for Brake			
1 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$7.4(3.4)$	$9.8(4.4)$				
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$9.2(4.2)$	$11.6(5.3)$	$1.0(0.5)$			
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$11(4.9)$	$13.4(6.1)$				

Tritex II DC Rotary

RDM/G090

Rotary Motor Torque and Speed Ratings

| | Stator | 1 Stack | 2 Stack | 3 Stack |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | RPM at 48 VDC | 3300 | 1800 | 1400 |
| Continuous Torque | Ibf-in (Nm) | $17(1.92)$ | $28(3.16)$ | $41(4.63)$ |
| Peak Torque | Ibf-in (Nm) | $21.8(2.46)$ | $36(4.07)$ | $52.8(5.97)$ |
| Drive Current @ Continuous Torque | Amps | 22 | 22 | 22 |
| Operating Temperature Range" | | -20 to $65^{\circ} \mathrm{C}$ | $\left(-40^{\circ} \mathrm{C}\right.$ available, consult Exlar) | |
| Maximum Continuous Power Supply
 Current | Amps | 18 | 18 | 18 |

* Power supply current is based on software current limit, not thermal limit. Consideration for peak current should also be considered when sizing power supplies. For output torque of RDG gearmotors, multiply by ratio and efficiency. Please note maximum allowable output torques shown below.
** Ratings based on $40^{\circ} \mathrm{C}$ ambient conditions.

Inertia				
	Stator	1 Stack	2 Stack	3 Stack
RDM Motor Armature Inertia (+/-5\%)	$\begin{aligned} & \mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2} \\ & \left(\mathrm{~kg}-\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{gathered} 0.00054 \\ (0.609) \end{gathered}$	$\begin{gathered} 0.00097 \\ (1.09) \end{gathered}$	$\begin{gathered} 0.00140 \\ (1.58) \end{gathered}$
RDG Gearmotor Armature Inertia (+/-5\%)	$\begin{aligned} & \text { Ibf-in-sec² } \\ & \left(\mathrm{kg}-\mathrm{cm}^{2}\right) \end{aligned}$	$\begin{gathered} 0.00114 \\ (1.29) \end{gathered}$	$\begin{gathered} 0.00157 \\ (1.77) \end{gathered}$	$\begin{gathered} 0.00200 \\ (2.26) \end{gathered}$

Radial Load and Bearing Life						
RPM	50	100	250	500	1000	3000
RDMO90	427	340	250	198	158	109
lbf (N)	(1899)	(1512)	(1112)	(881)	(703)	(485)
RDG090	350	278	205	163	129	89
bf (N)	(1557)	(1237)	(912)	(725)	(574)	(396)

*Add armature inertia to gearing inertia for total inertia.
Side load ratings shown above are for 10,000 hour
bearing life at 25 mm from motor face at given rpm

Gearmotor Mechanical Ratings

		Maximum Allowable Output Torque-Set by User Ibf-in (Nm)		Output Torque at Motor Speed for 10,000 Hour Life		
Model	Ratio	1000 RPM Ibf-in (Nm)	2500 RPM Ibf-in (Nm)	3300 RPM Ibf-in (Nm)		
RDG090-004	$4: 1$	$2078(234.8)$	$698(78.9)$	$530(59.9)$	$488(55.1)$	
RDG090-005	$5: 1$	$1798(203.1)$	$896(101.2)$	$680(76.8)$	$626(70.7)$	
RDG090-010	$10: 1$	$1126(127.2)$	$1043(117.8)$	$792(89.5)$	$729(82.4)$	
RDG090-016	$16: 1$	$2078(234.8)$	$1057(119.4)$	$803(90.7)$	$739(83.5)$	
RDG090-020	$20: 1$	$2078(234.8)$	$1131(127.8)$	$859(97.1)$	$790(89.3)$	
RDG090-025	$25: 1$	$1798(203.1)$	$1452(164.1)$	$1103(124.6)$	$1015(114.7)$	
RDG090-040	$40: 1$	$2078(234.8)$	$1392(157.3)$	$1057(119.4)$	$973(109.9)$	
RDG090-050	$50: 1$	$1798(203.1)$	$1787(201.9)$	$1358(153.4)$	$1249(141.1)$	
RDG090-100	$100: 1$	$1126(127.2)$	$1100(124.3)$	$1100(124.3)$	$1100(124.3)$	

Two torque ratings for the RDG gearmotors are given in the table above. The left hand columns give the maximum (peak) allowable output torque for the indicated ratios of each size RDG gearmotor. This is not the rated output torque of the motor multiplied by the ratio of the reducer.
It is possible to select a configuration of the motor selection and gear ratio such that the rated motor torque, multiplied by the gear ratio exceeds these ratings. It is the responsibility of the user to ensure that the settings of the system do not allow these values to be exceeded.
The right hand columns give the output torque at the indicated speed which will result in 10,000 hour life (L10). The setup of the system will determine the actual output torque and speed.

Gearing Reflected Inertia					
Single Reduction					
Gear Stages	lbf-in-sec 2	$\left(\mathrm{~kg}-\mathrm{cm}^{2}\right)$	Gear Stages	lbf-in-sec ${ }^{2}$	$\left({\left.\mathrm{~kg}-\mathrm{cm}^{2}\right)}^{\text {Deuble Reduction }}\right.$
$4: 1$	0.0000154	(0.174)	$16: 1$	0.000115	(0.130)
$5: 1$	0.0000100	(0.113)	$20: 1,25: 1$	0.0000756	(0.0854)
$10: 1$	0.0000265	(0.0300)	$40: 1,50: 1,100: 1$	0.0000203	(0.0230)

Backlash and Efficiency		
	Single Reduction	Double Reduction
Backlash at 1\% Rated Torque	10 Arc min	13 Arc min
Efficiency	91%	86%

Motor and Gearmotor Weights

	RDM090 without Gears	RDG090 with 1 Stage Gearing	RDG090 with 2 Stage Gearing	Added Weight for Brake	
1 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$12.5(5.7)$	$20.5(9.3)$	$23.5(10.7)$	
2 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$15.5(7.0)$	$23.5(10.7)$	$26.5(12)$	$1.5(0.7)$
3 Stack Stator	$\mathrm{lb}(\mathrm{kg})$	$18.5(8.4)$	$26.5(12.0)$	$29.5(13.4)$	

Speed vs. Force Curves

For RDG gearmotors, multiply torque by ratio and efficiency. Divide speed by gear ratio.
**RDM075 and RDM090 test data derived using NEMA recommended aluminum heatsink $10^{\prime \prime} \times 10^{\prime \prime} \times 3 / 8^{\prime \prime}$ at $40^{\circ} \mathrm{C}$ ambient

Tritex II DC Rotary

Dimensions

RDM/G075 Base Actuator

		RDM075	RDG075			RDM075	RDG075
A	in	3.05	3.05	K	in	$\varnothing 0.5512 / 0.5508$	$\varnothing 0.6302$ / 0.6298
	mm	77.4	77.4		mm	14 h 6	16 j6
B	in	$\varnothing 0.1969$ / 0.1957	$\varnothing 0.1969$ / 0.1957	L	in	1.18	1.18
	mm	5 h 9	5 h 9		mm	30.0	30.0
C	in	$\square 3.05$	$\square 3.05$	M	in	See Below	See Below
	mm	77.4	77.4		mm	See Below	See Below
D	in	$4 \mathrm{X} \varnothing 0.26$ ON BC	$4 \mathrm{X} \varnothing 0.26$ ON BC	N	in	4.59	4.59
	mm	6.5	6.5		mm	116.6	116.6
E	in	$\varnothing 3.74$ BC	Ø 3.74 BC	0	in	1.5	1.5
	mm	95.0	95.0		mm	38.1	38.1
F	in	$\varnothing 2.5587$ / 2.5580	$\varnothing 2.5587$ / 2.5580	P	in	5.30	5.30
	mm	65 g 6	65 g 6		mm	134.5	134.5
G	in	0.63	0.70	Q	in	1.06	1.06
	mm	15.9	17.9		mm	27.0	27.0
H	in	0.38	0.45	R	in	4.61	4.61
	mm	9.5	11.5		mm	117.0	117.0
I	in	0.11	0.11	S	in	0.75	0.75
	mm	2.8	2.8		mm	19.1	19.1
J	in	0.79	0.79	T	in	0.75	0.75
	mm	20.0	20.0		mm	19.1	19.1

RDM075

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$7.57(192.3)$	$8.57(217.7)$	$9.57(243.1)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$8.85(224.8)$	$9.85(250.2)$	$10.85(275.6)$

RDG075

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
M	$9.19(233.4)$	$10.19(258.8)$	$11.19(284.2)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
M	$10.42(264.7)$	$11.42(290.1)$	$12.42(315.5)$

[^10]
Tritex II DC Rotary

RDM/G090 Base Actuator

		RDM90	RDG090			RDM090	RDG090
A	in	3.54	3.54	L	in	1.57	1.89
	mm	90	90		mm	39.6	48.0
B	in	3.54	3.54	M	in	See Below	See Below
	mm	90	90		mm	See Below	See Below
C	in	$4 \mathrm{X} \varnothing 0.28$	$4 \mathrm{X} \varnothing 0.26$	N	in	1.77	1.77
	mm	7.0	6.5		mm	45.0	45.0
D	in	$\varnothing 3.94$ BC	$\varnothing 3.94$ BC	0	in	5.30	5.30
	mm	100.0	100.0		mm	134.5	134.5
E	in	$\varnothing 3.1492$ / 3.1485	$\varnothing 3.1492$ / 3.1485	P	in	3.87	3.87
	mm	80 g 6	80 g 6		mm	98.3	98.3
F	in	0.85	0.96	Q	in	1.06	1.06
	mm	21.5	24.3		mm	27.0	27.0
G	in	$\varnothing 0.2362$ / 0.2350	$\varnothing 0.2362$ / 0.2350	R	in	3.05	3.05
	mm	6 h9	6 h9		mm	77.4	77.4
H	in	0.39	0.63	S	in	0.75	0.75
	mm	10.0	15.9		mm	19.1	19.1
I	in	0.12	0.12	T	in	0.75	0.75
	mm	3.0	3.0		mm	19.1	19.1
J	in	1.26	1.42	\mathbf{U}	in	4.58	4.58
	mm	32.0	36.0		mm	116.4	116.4
K	in	$\emptyset 0.7480$ / 0.7475	$\varnothing 0.8665$ / 0.8659				
	mm	19 h6	22 j6				

RDM090

Without Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$7.69(195.3)$	$8.69(220.7)$	$9.69(246.1)$

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M	$9.0(228.6)$	$10.00(254.0)$	$11.00(279.4)$

RDG090

Without Brake Option			
DIM	1 Stack Stator 1 Stage Gearhead	2 Stack Stator Stage Gearhead	3 Stack Stator Stage Gearhead
M	$10.80(274.3)$	$11.80(299.7)$	$12.80(325.1)$
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
M Stage Gearhead	2 Stage Gearhead	2 Stage Gearhead	
12.06 (306.3)	$13.06(331.7)$	$14.06(357.1)$	

With Brake Option			
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
1 Stage Gearhead	1 Stage Gearhead	1 Stage Gearhead	
M	$12.13(308.1)$	$13.11(333.0)$	14.11 (358.4)
DIM	1 Stack Stator	2 Stack Stator	3 Stack Stator
2 Stage Gearhead	2 Stage Gearhead	2 Stage Gearhead	
M	$13.37(339.6)$	$14.37(365.0)$	$15.37(390.4)$

[^11]
Notes

Tritex II DC Linear Ordering Guide

TDX $=$ Actuator Type
TDX $=$ Tritex II Linear Actuator, high mechanical
capacity

BBB $=$ Actuator Frame Size
$060=60 \mathrm{~mm}$
$075=75 \mathrm{~mm}$
CC $=$ Stroke Length
$03=3$ inch $(76 \mathrm{~mm})$
$06=6$ inch $(150 \mathrm{~mm})$
$10=10$ inch $(254 \mathrm{~mm})$
$12=12$ inch $(305 \mathrm{~mm})$
$14=14$ inch $(356 \mathrm{~mm})(75 \mathrm{~mm}$ only $)$
$18=18$ inch $(457 \mathrm{~mm})(75 \mathrm{~mm}$ only $)$
DD $=$ Screw Lead (linear travel per
screw revolution)
$01=0.1$ inch $(2.54 \mathrm{~mm})$
$02=0.2$ inch $(5.08 \mathrm{~mm})$
$04=0.4$ inch $(10.16 \mathrm{~mm})(60 \mathrm{~mm}$ only $)$
$05=0.5$ inch $(12.7 \mathrm{~mm})(75 \mathrm{~mm}$ only $)$

TDX = Actuator Type

 capacityBBB $=$ Actuator Frame Size
$060=60 \mathrm{~mm}$
$075=75 \mathrm{~mm}$
CC = Stroke Length
$03=3$ inch (76 mm)
$06=6$ inch (150 mm)
= 10 inch (254 mm)
$12=12$ inch (305 mm)
18 = $18 \mathrm{inch}(457 \mathrm{~mm}$) 75 mm m)

DD = Screw Lead (linear travel per screw revolution)
$=0.1$ inch (2.54 mm)
$04=0.4$ inch (10.16 mm) (60 mm only)
$05=0.5$ inch (12.7 mm) (75 mm only)

E = Connections
$\mathrm{N}=$ NPT Threaded Port via Adapter with Internal Terminals, $1 / 2^{\prime \prime}$ NPT (75 mm only)

F = Mounting
C = Rear Clevis
G = Metric Rear Clevis
D = Double Side Mount
$\mathrm{K}=$ Metric Double Side Mount
E = Extended Tie Rod
M = Metric Extended Tie Rod
$\mathrm{F}=$ Front Flange
$\mathrm{R}=$ Rear Flange
T = Side Trunnion
$Q=$ Metric Side Trunnion
G = Rod End
M = Male US Standard Thread ${ }^{1}$
$A=$ Male Metric Thread ${ }^{1}$
F = Female US Standard Thread ${ }^{1}$
$B=$ Female Metric Thread ${ }^{1}$
HH = Feedback Type
HD = Analog Hall Device
IE = Incremental Encoder, 8192 count resolution
AF = Absolute Feedback ${ }^{6}$

III-II = Motor Stator, All 8 Pole
TDX075 Stator Specifications
1B8-30 = 1 Stack, 48 VDC, 3000 rpm
2B8-30 $=2$ Stack, 48 VDC, 3000 rpm
$3 B 8-20=3$ Stack, 48 VDC, $2000 \mathrm{rpm}^{2}$
JJJ = Voltage
$048=12-48 \mathrm{VDC}$
KKK = Option Board
SIO = Standard IO Interconnect
IA $4=4-20 \mathrm{~mA}$ Analog $1 / 0$
CON = CANOpen, non-connectorized ${ }^{5}$
EIN = SIO plus EthernetIP without M12 connector ${ }^{5}$
PIN = SIO plus Profinet $I O$ without M12 connector ${ }^{5}$
TCN = SIO plus Modbus TCP without M12
connector ${ }^{5}$
MM $=$ Mechanical Options ${ }^{3}$
AR = External Anti-rotate
L1/2/3 = External Limit Switches (7)
$\mathrm{RB}=$ Rear Brake
$\mathrm{PB}=$ Protective Bellows ${ }^{4}$

NOTES:

1. Chrome-plated carbon steel. Threads not chrome-plated.
2. Not available on 0.1 inch lead.
3. For extended temperature operation consult factory for model number.
4. Not available with extended tie rod mounting option.
5. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only.
6. When ordering a RDM or RDG 60 mm or other sizes with top mounted connectors the battery backup for AF feedback must be mounted externally. A DIN rail mounted board and battery is supplied, Exlar PN 48224.

Tritex II DC Rotary Ordering Guide

RDM/G = Motor Type
RDM = Tritex II DC Rotary Motor
RDG = Tritex II DC Rotary Gearmotor
AAA = Frame Size
$060=60 \mathrm{~mm}$
$075=75 \mathrm{~mm}$
$090=90 \mathrm{~mm}$
BBB = Gear Ratio
Blank = RDM
Single Reduction Ratios
$004=4: 1 \quad 005=5: 1 \quad 010=10: 1$
Double Reduction Ratios (NA on 75 mm)
$016=16: 1 \quad 020=20: 1$
$025=25: 1 \quad 040=40: 1$
$050=50: 1 \quad 100=100: 1$
C = Shaft Type
K = Keyed
R = Smooth/Round

RDM/G090 Stator Specifications
1B8-33 = 1 Stack, 48 VDC, 3300 rpm 2B8-18 = 2 Stack, 48 VDC, 1800 rpm 3B8-14 = 3 Stack, 48 VDC, 1400 rpm

III = Voltage
$048=12-48$ VDC
JJJ = Option Board
SIO = Standard I/O Interconnect $\mathrm{IA} 4=+4-20 \mathrm{mAAnalog} \mathrm{I} / \mathrm{O}$
CON $=$ CANOpen, non-connectorized ${ }^{2}$
EIN = SIO plus EtherNet/IP without M12 connector ${ }^{2}$ PIN = SIO plus Profinet IO without M12 connector ${ }^{2}$ TCN = SIO plus Modbus TCP without M12 connector ${ }^{2}$

NOTES:

1. For extended temperature operation consult factory for model number.
2. Requires customer supplied Ethernet cable through I/O port for Class 1 Division 2 compliance only. Also N/A on 60 mm .
3. When ordering a RDM or RDG 60 mm or other sizes with top mounted connectors the battery backup for AF feedback must be mounted externally. A DIN rail mounted board and battery is supplied, Exlar PN 48224."

[^0]: * Ratings based on $25^{\circ} \mathrm{C}$ conditions.
 *** T2X peak force for 0.1 inch lead is $5400 \mathrm{lbf}(24020 \mathrm{~N})$.

[^1]: *Test data derived using NEMA recommended aluminum heatsink $10 " \times 10 " \times 3 / 8^{\prime \prime}$ at $40^{\circ} \mathrm{C}$ ambient.

[^2]: *Test data derived using NEMA recommended aluminum heatsink $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 2^{\prime \prime}$ at $25^{\circ} \mathrm{C}$ ambient.

[^3]: * Add 1.61 inches to dimensions " A ", " B " and " D " if ordering a brake. Add 1.2 inches to dimensions " A ", " C " and " D " and dimension if ordering a splined \triangle main rod ${ }^{* *}$ Add 2 in (50.8 mm) to dimension "E" if ordering protective bellows.

[^4]: * Add 1.61 inches to dimensions " A ", " B " and " D " if ordering a brake. Add 1.78 inches to dimensions " A ", " C " and " D " and dimension if ordering a splined Δ main rod.
 **Add 2 in (50.8 mm) to dimension " E " if ordering protective bellows.

[^5]: * Add 2.33 inches to dimensions " A ", " B " and " D " if ordering a brake. Add 1.77 inches to dimensions "A", "C" and "D" and
 dimension if ordering a splined Δ main rod.
 **Add 2 in (50.8 mm) to dimension " E " if ordering protective bellows.

[^6]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^7]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^8]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^9]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^10]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

[^11]: Pre-sale drawings and models are representative and are subject to change. Certified drawings and models are available for a fee. Consult your local Exlar representative for details.

